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by

C. J. Shih and P. A. Blythe

C r. en r or the Application of Mathematics
Iehigh University

Abstract

Supersonic noz1le flvws of a condensible vapor are

considered in the high activation limit fo- homogeneous nuclea-

tion. Conditions under which the fina! collapse of the super-

saturated state is described by a condensation shock are

dc determined. The analysis leads to a natural definition for

the shock position. it is shown that the shock zone is asso-
ciated with droplet growth. Droplet production occurs upstream
of this region. Some useful similarity laws are obtained for

the production zone.
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I, Introduction

In two recent papers non-equilibrium nozzle flows of a

condensible vapor were considered in the limit when the collapse

of the supersaturated stqte occurred close to the condensation

point x . This paper is concerned with flows for which the

caollapse, characterized by some point xk , occurs at a finite

distance downstream of x . The discussion is restricted to

homogeneous nucleation,

For this process the rate equation contains two basic

parameters, a droplet growth rate X and an activation factor

K . It appear- (Shih, 1972) that X>>l over a broad range of

reservoir conditions. The limit .- , was discussed in I and II

for flows in which x-xC = o(1) . This latter requirement can

be viewed as a restriction on the magnitude of K ; at fixed

values of A , x I-x decreases as A increases. In fact,

available data indicates that K<<l in many practical situations

(Shih, 1972) and the presen' laper is concerned with the double

J1. limit A- , K-O such that xk-X = 0(1)

Of particular importance in this analysis is the beliavior

of the activation, function B(p ,'r) when n is the vapor

pressure anri T the temperature (§2). The minimum value of B

corresponds to maximum droplet production. For nozzle flows,

the vari.ation, of B is usually of the type qhown in figure 1.

Immediately downstream of the condensation poi, the initial be-

havior of LB is governed by the frozen solution with the conden-

sate mass f'raction g=0 It was found in I and 11 that the

subsequent growth of g leads to a strong cipliig between the

rate and flow equation';. Thi.s coupling induces a local minimum

in B as shown in figure 1. The collapse point xk corresponds

closely with this turning point. It is important to note that

the frozen function bf also has a ttrning point, at X=Xmin

which is independent of the parameters A and K . For some of

SPetty, Blythe and Shih (1972), Blythe ant Shih (1973), rcferred
to respectively as I and II.

Preceding page blank



the analy'sis it is necessary to distinguish between flows for

which Xk <:xn and flows for which Xk X . (It is assumed
throughout, consistent with standard results for B(pvT) , that

mi-X 0(0) .)

Initially, g is exponentially small and its growth can
be computed using the frozen solution. This calculation leads
to a simple criterion for the determination of xk (93). Qual-

itatively, xk is strictly associated with dr,'oIt oroduction.
Although the production rate has a local maximum in this region,
the mass traction g is still small (0.(K)). Within this zone

* the equations reduce to a unique similarity form (§4) which is
identical with the corresponding result obtained in II.

Downstream of xk droplet production is exponentially

small and the process is dominated by droplet growth (§5). For
SXk <Xmin it is found that the growth region, which lies close to

xk , is governed by a condensation shock of finite strength (§6),

in contrast with the limit discussed in II where the collapse was

governed by a weak shock. The width of the shock zone is 0(K•)

A discussion of the shock relations is given in §6. In
standard treatments it is conventional to replace the full equa-

tion of state by the perfect gas law (see e.g. Wegener and Mack,
1958). This leads to a considerable simplification in the
analysis since the shock relations are then equivalent to those
governing the one-dimensional flow of a perfect gas with: heat

addition (Shapiro, 1958). It is shown in §6 that the terms

neglected in the classical approach may be important at high

Mach numbers.

For these flows it has often been shown that there is a

critical heat addition, or condensation fraction, beyond which

thd flow will choke. The determination of this cr'tical amount
is somewhat more complex for the full shock relations discussed
here (§6).

An additional constraint on the mass fraction ii "Is("

defined by the rate equation. It is shown in §§S and 6, neg-

6



lecting terms O(K ') , that the limiting value within the shock

zone Is governed by satuiration conditions. Consequently, the

flow will choke only if the limiting saturation temperature is

greater than the chcking temýorat.ure. No particular attention

appears to have been given in the literature to the determination of

conditions under which saturation will precede choking. A precise

deszription of this boundary requires detailed numerical calcula-

tions. However, it is shown in appendix 1 that choking will not
occur if the flow at the condensation point is supersonic (M >1)
occ r.. f - .e. fIo

As xk+X the previous remarks require modification.

The droplet production zone now depends on a single parameter

v . Numerical solutions of this equation are given in §8. Pro-
vided that K is not too small this zone is still terminated by

a condensation shock, though the shock width is now O(K 6)

For still smaller values of K (§9) droplet production

is governed completely by the frozen solution. Although the

rate equation does simplify, the growth zone is not, in general,

described by a condensation shock.

It has been pointed out (Wegener and Mack, 1958) that the

"classical shock analysis does not predict either the shock

position or the end state immediately downstream of the shock.

Nor does it provide information on the conditions under which

the collapse of the supersaturated state is adequately described

by the shock relations. In the present limit, the analysis not only

yields a criterion for the shock position but also outlines

the conditions under which such shocks occur. As noted above,

if the collapse is governed by a condensation shock, the down-

stream limit of the shock zone corresponds to a saturated state
for M >1

7



2. The conservation laws and the rate equation

For the convenience of the reader the relevant results are

summarized below. These relations were reviewed in I,§2 where

the formulation given in Wegener and Mack (1958) was closely
followed. Under the assumpticns discussed in I, the equations

governing the conservation of mass, momentum and energy for a

mixture of a condensible vapor and an inert carrier gas are

puA = m (2.1)

Pu d d- (2.2)

and

c T + u2 -g Cp + U c T (2.3)
P PO C p 0

All variables are normalized with respect to conditions aL the

condensation point.% p is the density of the mixture, u is
the gas speed, p is the total pressure, T is the temperature,

g is a weighted mass fractio,: (I, 2.12), c is the specificp0 .
beat at constant prczsure for the mixture, r, is the mass flow
rate and A(x) is the local cross-sectional area at any station

The suffix c corresponds to conditions at the condensation
point x=l where p = p = T = 1 and g=0

If pT denotes the -artial pressure of the vapor and Pi

te partial pressure of the carrier gas

p ) "0) i +i 1° (2.4)
IjV PV

where p and iv are the mole'cular weights of the mixture

and the vapor respectively. wL is the reservoir specific

huMidity.

A !nt is defined by the in Lersection of the in itinK, cc--
. PA.'• n•-.an.. the co-existenee linJ .



In the present notation, the equation of state for the
mixture is

p lI1 gT (2.5)

where H is a non-dimensional latent heat. (This factor arises

iLn (,2.5) due to the normalized formn ut g see (2.3)) and

1, (2.12).)

The rate equation for- homogeneous nucleation can be

written

g X (2.6)

r where

M(x,U) LF(s) rTD (s)-T(s)]dsl (2.7)

is the mass at x of a droplet formed at E, and .1(x) is the

rate of formation of dzop1.ets of critical size. It is assumed

here that the growth function F i~s independent of dropict size

with

F FPPT,g). (2.8)

At the condensation point F =F(1,1,0) =1 1 In (2. 7) T is

the droplet temperature which again is normal~ized such that

T DaI at the condensation point. T'D =T D(p,Tr,g) is also

assumed to be independent of dropler size. It is importlant to

note that on any equilibrium path T=T D

D (2.9)

where, in the size independent 'Limit, the saturation temperature

T Iis defined in terms of the local vapor-preczs'ure by th(.e in.

verse of the Clausius-Clapeyron law, i.e.

T S 1 + H ln(p ).(.0

9



The droplet production rate

Here B is proportional to an activationl energy. Classical

theori-js predict that

B B(p ,T) (In s)2 t (2.12)

where

s / (2. 13)

is the saturation ratio. The saturation pressure p is de-

fined by the Clausius-Ciapoyron ltiw

p Mx{14-) (2.14)

In (2.12) it is assumed that the term (in s)' completely

describes the singular behavior near s-1 The variables are

normalized such that B(1,1,,A'

All atandard models (nee g Voimer, 4191() nr, '-rt . r*.
If. recensary, th.o ftnalyy91tj ceft be gervratiiz.1 to L;~*.
deptindcance e.r 8 at d 1'e



3. Init iath

Since B is unboundod at the collde.isiltull p on it it .('o l1owx.

that initially g is exponentially small. The ýtott ill i

determined from che frozen rolations

,a d u' ('r -T,) (3.1)

whe re
C

y Id•---• i3.2)

p0

V
This systen is completed by the contir.uity equation (2.1). If

the condensation point ii-_ lownstream or the t~h roat the riasi

flow is defined by its frozen value

mInl u YA (3.3)

where At is the throat area. (3.3) is also a valid firs4,

approximation when no appreciable condensation occutrs upstieaimm

oC the throat. If, however, the supersaturated state collapses

for x<xt the mass flow is determincJ from local cunlit ions at

the appropriate sonic point.

From (2.6) it appears that the initial growth of the con-

densate mass fraction is defined by

g • x r'f(x,&)Zf(&)A(r.)exp(-K" Bftr,)}dC

P [1 + O(g/W'JJ (3.4)

where the suffix f denotes evaluation from the frozen solution.

As K-O this region of near-frozen flow can apparently exist

for a finite distarce downstream of the condensation point.

Equation (3.4) is the appropriate extension of (11.3.1) and

holds even when the initial growth region is not confined to

the neighborhood of x=l
11
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Noar the cond*13Attiall poillt

Ii

apvrt (rom sumo rn olstant U'¢tov', n li mi 'h iail i* ov dii,
11 - If tho fro tot% ~on it ionl p* ro litt it it~ me %I) rficti I to
sh ow 'ýrom c 1s a I th Itov 1IJ.) t ha t

it. r* , WherID 9iwi An aCOnStent fah;.Qj is 110t 1iiCIM0d .11%
(3.6) . The characteritic bohavi&r of this t'wmction Is 5hown

in figure 1, Only i ttuations for whils It f ir 1 I1 '4t'lgtl
turning point, at say x"xml , will be •,o•iderd hore.

For xmxinI , O tho intoegral it (3.,4) is obviously
of stcepest doscents type. lhowevor, the cumulative oyffeet (of
tho coupling between the rate and flow eqtat ions .anI bocoma
important upstr,•am of xmin Ilk this Cast tho coupling Can
limit the droplor production and lead to i local turtniin point,
characterized by some point x-xk , for the activut ion term
B(pv.'r) (see tig. 1). rho analysis givon In I I was Concernod

with flows for which x .- It this patper the altwly)is is
extended to situations for which the coupled turnting point ca'n
cccur at a finite distance downstream , the condensation point.
It Is conveniont to distinguish between thoste i'low for which
this point lies upstream of xmil and those for which it lies

close to xwil * Initially, the analysis is restricted to tho
former case. Flowi in which Xk'XMi are di sused i n S§ 'Y-

For x<xmi the substitution

*=x Ks

can bo used to show from (3.4), neglecting the factor O(g/K)
that



rr

I I

It t'ol lows froinl (A, ) 1 Wtl t

*60a i) (x) W() it(x )0XII1-*K 1f1 -XI)

(3.4) iniptlie- that thiti initilal itruwth law will f'ail WhtIM

For sufficivittly large Nvaluvs of A~ it appetarti froa (.1,1)

that (0.11) will occur upstreami of' ,k . In thill case it Is

con~venient to characterize this roxioii hy defitiing a point xk
* such that

IA

will, In fact , correspond to the l'icl turning point di scused

akrl I or.

The criterion (3.12) may he (f some practical interest

since it defines a critical onset point for tho collapse of the

supersaturated state. Onset critria have been disc'ussed

13
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oxefonalv.y In ýIJ~* lit~i'ature (WOelilor (10401, WQIIoIIS and~
Moak (190)f, It is of intorwt to observe th•t O•waitscsh
(1941)1 by Means of qualitotive OaR'iuqento, obtaieloo a critorion
which tot si•lAar tn form to (3,11), i% addition to the oxpavionltial

s itlat , armA ,i (3,,11) M Y

t'itrLy' the point Xk defined by (3.1) is mor.' appro-
priatety reftered to as # velative onset point for which the
* ciet|l value of j i* mealured with rospett to the poraeteor
S, Conventional definition* for thi3 point usu#lly correspond
to some absolute v olue of tho Condensation fraclion or, at Iust,

to some practical ivasu'e of the departure from 4 frozen -,tatv.
Por nozzlo flows th'- departure it often defined in teritus of
static pressure measurements (aee a.lg Wegener and Mad'., 1958),

14



Approprlsat a•ymptotic *xpakniioias ti thv noighborhood of

j 1' * 1 I

ik

1 I 'rk * •t0 + ,

S~~Otc., whore'!

* K (x-xk) (4 ))

• ,1•1l'he o xptalli~ins dt'o comnpatible with tho limiting• b~thavor,

.1 -x ot' tho initial growth law (3,10) and genotralit the
Uapproach out lined N 1 1, 4

,'I Substitution into the cons•srvaition oqiations (J.,)-(2,3),
togethor with the equation of state (2.$), gives

•(•(M:-,i)T) - (y-l)M Altkti (y-1)Nk-y'k ,
T 9

(Mk 1)'i * Y11ý - 1) AW -Y -11

i k 1kAkI k T1

0 ( 1)-' Al. , - (1-y'1-Hk'11 ,

2 -1
(M M+)-) "

Similarly, it is not difficult to show that

pv 2 iW 0 V 2
(MP2 ) 1 ) -I . (YMA- 0 + Yl)M- Iii. H M k')Jf+F( 1

(4.4)

S . In (4.3) and (4.4)

A 1 dA} (4.5)

15



and

I I HT (4-6)

Correspondingly, th# rate equation (2.6), using (2.7) and

(2,11), reduces to

- ,, '4xP( (ji 1 (4.7)

where

B a Bk + KB (01) + . (4.8)

and

- (4.9)

From (4.3) and (4,4) it follows that

B• - af, + bgI(O1 ) (4.10)

with

aB Y( ' ( .11
a ~ 1 * A[ 1 (T ~)k * (.11

and

b bT1 (T ") + b' p a)k (4.12)

where

b ~ ~ T k k k__ _ _ _ __ _ . (.3
bT1~ ~ 2 .. TC•I

(y-1]M2 " (yM Cl-Wo ' "W I P (M•l)

b ,, - "F k0 e Uv k (4.13)

Vk Tk(M-I)

16



f,,m In this Soction it is assulflod that xk<XM In which, since
S 1t has a minim111um at xm~ , mplins th~at (d~l /dx)k,:O or,

•, t from (4.9)

a > 0 (4.14)

Furthor, for the usual models (see e.g. Volnior 1939)

0 (4.15)

Only flows which are supersonic at xk will be considered in

this paper. From (4.1) to (4.15) it is then not difficult to

show that (Mk>l)

b 0. (4. 16)

The substitution

g bga a4 (4.17)

reduces (4.7) to-.

g(O~b) 3 ( -) e p{ -g(q,;b) }dip 4.8

"Although the mass fraction is still small, O(K) , (4.18) implies

that the coupling between the conservation and rate equations

is now important. The region is characterized by a marked in-

crease in the droplet production factor and is equivalent to

the precursor zone discussed in II. In II this region was close

to the condensation point but here it occurs at a finite distance

downstream of x (=1)

The solution of (4.18) depends on the parameter b How-

ever, the further transformation

T With respect to the frozen sound speed.

17
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,,,€ - - In b (4.19)

yields1A
~- j(~.~~expQ-g())d~(4.20)

which is parameter free. (4.20) is identical with the corre-
sponding equation obtained in 11,4. Details of the solution
were given there. As OA-*W it was shown that

a +.+ 13 a 0(I) (4.21)

* where the error term iv, in fact, exponentially small. The
coefficients a, are glven in table I and are defined by

a (-O -3-r.exp[,-0)}d3..(4.22)

Table 1. The cow,( t ap.

From (4.2) the width of tho precuror tole In apparently O(K)
It is relevant to note from (4.17) that Hn effective measure

of the width is Ka"

Droplet production is exponenttslly imall downstream of
this region. The cubic growth predicted by (4.21) certainly can
not persist: this growth will ultimately be limited by a return
towards a saturated state. For the near equilibirum limit
discussed in II it was shown that the final growth region was
governed by a weak condensation shock. The corresponding
analysis for the present limit is given below.

S18



5, Dropletjigrowth

Before discussing the detaile~d structtirc of the growth

region it is convenient to re-write the basic rate equation (2.6)

in an alternative form, Using (2.11) and the definition (3.12),
the integral equation (2.6) becomes

g~x;K a'~ XM (x~;kC)af• exp{.K'1(B(t,;K)-B )}dt (5.1)
610~ 1  kk k

*where the implicit dependence on the parameter K is now in-

cluded. In terms of a normalized radius

R(x;K) .J ~ ;K ds (5.2)

* ~k k
with

(see (2.7)), (5.1) can be further written as

a43(-I) r (5-4g(x;K) 6Ky 3 3r[R(x;K)]3  Ir(x;K) (54

where

I (x,,K) = [RfrK)1 ex{(_1B;K)-k)d A(S.S
fl k k

Note that the growth of R is measured from

xk = k -Ka lnb (5.6)

which corresponds to the displacement defined by the trans-

for-mation, (4.10). The use o k rather than xk enables
*the precursor solution to be applied directly to the evaluaticn

of the integrals Ir

Outside of the precursor zone the integrand in (5.5) is

exponentially small. From the precursor solution (§4) it is

straightforward to show that for x>Xk

19



Ir (x; K) (M I eK) (5.7)

r r

neglecting exponentially small terms. Further

r(-;K) a Irexp- I0d [I+0(K)] 5(.8)

Hence, from (S.4), x>xk

i g~x;K) - -a_- (KL l RcX;K)]- ~ 59
aK ruo 3-rr-bK r -0 1 A 3 -3r R X )](S.9)

where

(l)r -(r+1)S-3r 6- (Ka' ' Ir(-;K) (S.10)

Using (5.8) and (4.22) it follows that

*" Ar - ar[l+O(K)] . (5.. 1 )

Direct inspection of the equations suggests that the

precursor expansion fails when g-0(1) or, from §4, when
A 2

Sx-x_ O(Ký) . Consequently, appropriate independent and
dependent variables in the growth region are defined by

X-x k K x1
S(5.12)

R(x;K) " K3' R(x;K)

with

g(x;K) - j();K) , T(x;K) T(x;K) (5.13)

etc., Substitution in (5.9) gives

g-L[a al•AX(x;K) + a a2K,(X;K) + a aK%'•f(x;K) + O(K)]

(5.14)

20



I i &,.. ............

I

where

! (X; K) a (xis; K)ds (S.IS)

kl (X K) Q (x;K) . (S.16)

Obviously, from (S.15), the integral form of the rate
equation is now equivalent to the first order differential

relation

dA

aX (; K) (.7

with

R(O;K) 0 . (5.18)

The function • does, of course, depend implicitly on g and
hence, from (5.14), on R . This relationship is defined by
the local solution of the conservation relations together with
the equation of state.

Within the present growth region the dependent variables
have asymptotic expansions of the form

lc(x;K) lgo(x) Kvg(x) + (..19)

etc. However, it follows from (5.12) that the effect of theI-! local area variation is 0(K') and that the conservation relations

reduce to the standard one-dimensional form even if terms O(K'•)

are included (see below, §6). Correspondingly, it is appropriate

to retain terms 0(K in (S.14).

It is convenient to introduce the transformation

SS(x;K) " b haa [R(x;K) + "*a a K ) (5.20)

where

.21



,! • • -.t . - -t ,. , -. . - .

b- b aa/ x .(.1

(S.14) now becomes

xWK) SI(R;K) + O(K3) (5.22)

with

=(R;K) - (X;K) etc. (5.23)

In addition, from*(5.17)

dS =i•;K) (5.24)
dR

and from (5.18), S satisfies the initial condition

9(0;K) = 1 =-0.2253(Kb' )K (5.25)

correct to O(K")

22



6. Condensation shocks

Sabstitution of the expansion

ST(x;K) - T(x;K) , g(x;K) = g(X;K) etc. (6.1)

into the conservation relations (2.1) to (2.3) shows that within
the growth zone, correct to O(K1 •)

Pu = OUk

P +P u (6.2)

c T + u2c . cTk+ -u2 = c TPO p 0 k Uk p° 0o

where the right hand sides follow from matching with the pre-
cursor solution. It was noted in §5 that the local area variation

2/
is 0(K •) and that the one dimensional relations (6.2) correspond

to the usual description of a condensation shock (Wegener and

Mack, 1958).

in addition, the equation of state (2.5) becomes

p aO(l-H g)T . (6.3)

V'his relation is often repliced by the approximation (1I--)

Equations (6.2) and (6.4) are equivalent to those governing the

one-di,,ensional flow of a perfect gas with heat addition (Shapiro,

1958, Wegener and Mack, 1958). However, neglect of the term

0(H 1 ) in (6.3) can lead to significant e-rors at sufficiently

high Mach numbers (see below). It will. be retained in the

present discussion.

The solution of the system (6.2) and (6.3) can be written
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I

_k Y T 1 C-(y--• ' ToTT ,,IiT y,¥T ri

Uk PM2 y+l (Y-1~'% • ~~~~Mk ÷I(_) -]

(6.S)

where the stagnation temperature

T0~~ ) (1..2M)k = ,L~J~2 (6C'

and the suffix C corresponds to conditions at the condensation
point. Further

I + 1÷yMt(1-- (6.7)Pk (6.7)

and

r. Pka (-A-) .. b. 8

In (6.5) the function c is defined by

H C,(H 'Y C it Y 2 . C o

(6.9)

with

C yY (6.10)
To~sY Y- i-~-TIT

C ~ ) (2 + 1,)T T0

and

C 3 ( y) ti(y-l) (T°)

Consequently, if f represents any of the dependent vriablerubi

i/u k. etc. Then, with the except'on of the vapor pressure,

From (2.4) (I,(3.2)) the vapor pveiure will depend on the
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additional. parameter 1i*IVv #0

Using these relations, the solution of (S,24) can be written

_-- (6.14)

where

2,
neglecting terms O(K"13) The dapendenco on the parameters

I Mk etc. is to be understood. Using (S.2S) it can be shown that

D a 2  (Kb a 33 (Kb

Some actual calculations of the shock structure for a

conventional model are shown in figure 2 It is assumed that

TD'=T (Oswatitsch, 1942) , wo0 i (pure ':apor), and that

U Vdepeden_. (•. 17?)

(Wegener and Mack, 1958). In this case, including the parameter
J•.•i i'dependence,

V V(S;Mk.FI,TOy) . (1.l'3)I. For the calculations shown in figure 2 the downstream limit of

the shock solution corresponds to a saturated state. It might

appear from the rate equation that this asymptotic limit willI •.always be defined by an equilibrium state with

'r TD T (6.19)

V (see (2.9)). Ho'ever, from (6.5), this saturated limit, at

which g-g. , can be achieved only if
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for all I , It should he Stressed that j6 %oir'iApO11d8 to
a local equilibrium *tat#; it ia not dofined hy the alubal
solution d1ACaused in 1113,

I"t' Oio at some St-$ the flow Is sai• to he chokhd,
It 13 ttraightforwrtl to veritfy from the shock rolations that

t,,A flow attains sonic speed at this p%1nt, whe.r thl appropriate

sound speed is Wlefned by

and tho w tLixes denute evaluation from an isetitropiti troten

$tat#,
Although it. is important tsi understand the conditions ujidor

which choking will occur upstream of the equAlibrium state,
surprisingly little analytical work a peaol to havt been done

on this problem, In most standard treatments the classical
shock relations (I-l-) are usod to obtain an upper hound on

tho mass fraction (heat addition) independont of the oquilibriuaIl
constraint. It Is shown in appendix I that a jocalt saturated

equilibrium 3tate is al)ways attained upstroam of choking if

T i(Li .44)

or, equivalently,

Nt > 1 . (• 2 .

Choking is possible only if M C<I or

yl > T a > 1,. (6.24)

tIn tho present analysisM tk>1 j no restriction in placed on M C
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This critrtt on is apparently known *expertieatlly (sto osgi Pouring,
1969) hut it 4401 not a*Pear to h*vQ been Provioutly JeduVed by

antalyt1ifl a'ruments,

It should ibe strn•sed that (6,d4) ti a nocooaary rather'
.thant 4uffictent :t'vterian, An approimmate extimats • r the

choking borriei to deducod in appendix 2 undor the assumption
thAt

It is Phown there that chakinl will occur upistr'eam of any

: •ttrated state if

2 - 11 11 OW i4 W

where ~n '

i.~ ~ ~ ~ ( 2(')(• I

and

•• • Q " 1 " • 0 .1r, 7

More detailed numerical calculations are presented in

figures 3-5. For given H and Y these fi.•ures show the lacu,"
of the choking and equilibrium points in the (gj) plane for

a pure vapor, The numerical results confirm that choking is
possible only for Me< I and (Mk- 1) sufficiently small.

For large 11 , the shock relations simplify considerably.
In particular

C * (y+l) , H.- (6.28)

and the approximate choking criterion (6.25) reduces to
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However, it is easily seon •rom (6,9)-(6uIR) that difficulties
do arise with the large H approximation when To 0(H)

It should also be notod that o'or the finite H analysis
given here the choking condition 0-0 way have more than one
root, In fact, if choking occurs, wbich certainly requires that
C0t,0 tit follows that the cubic (6,30) has two positive roots
for the limiting value of the mams fraction. The analysis pro-

sontod above considers only the smaller of theso two roots. in-

dependently of the saturation constraint, which precludos either

root for M kl , it is not clear whether the largo•r root corre-

sponds to any real physical situation,

N ote that for sufftiiently large C<O0
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ýýmr ýW" V7.~

?.Int~elnrDw2 Ix-m x < I

In the preceding analy-Oa it was assumed that

S'l x)l (7.1)

(so* (3.8)). If B-O at xw r , (7.1) can be replaced by

Aso • (k- n) (1) . (7.2)
As or more precisely when Xk-XmO-K alterna-

tive approa:h is required. The frnzen turning point and the
actual coupled turning point are now, close together and it is
convenient to introduce the variable

* K K•(x-xm.) . (7.3)

In terms of 4 the initAal growth law (3.4), neglecting
* •the error term O(g/K), becomes

g 3)K3OA exp(-K 1B) (4TS~[1"2d

S• •[1÷0(K A] (7.4,)
Ii,

where

B- B, xmi) etc. (7.5)

T Corresponding to the definition (3.12) it is appropriate to

define

Dm - K 5 A exp(-KB ) . (7.6)

For the analysis discussed earlier, with B'-O(1) D >l . The
f m

Scriterion (3.12) implies that when B'-0(K•) , D-O(l) . Sub-

stitution of (7.6) in (7.4) gives

g KD (C-T)exp[- B ]d' (7.7)
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It is apprevnt that (7.7) is not valid for finite c when
D .O(l) ; the error term O(g/K) is then importait. This limit
is discussed below in W8

It should be stressed that the present paper is concerned
with the double limit X-Pa j K*O such that xk l-O(1) . At
fixed values of K the collapse point moves downstream, and the
parameter; D3  decreases as X decreases. The analysis for
D 60o(1) is discussed in 59.

p.
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8. The droplet and growth zones, DMW~OMl

The result (7.7) describes only the initial growth of the

Coridens at ion fraction (--).For finite values of 4 'th e

*correct expansion J-s

*g(x;K) g(C;K) K92(t) + .

T(x;K) -T(c;K) *T + K½T (C KT()+£(81

etc, It is easily shown that the terms O(Kh) are defined by

the frozen soluttion: any departure from the frozen state i's

associated with the terms 0(K) .Using the conservation rela-

tions (§2), it can be shown that

(M2 -1)T2  = !(M2-l)T,,C2 + (yl(2y 1H-M2)g2  (8.2)

with similar relations for the remaining dependent variables

(see (4.3)). Substitution in the rate equation (2.6) gives

DC 'e 1Bxl bg (-r)]dt . (8.3)

The transformation

9 b 92  TM~B~' (8.4)

reduces (8.3) to

wherA
-2

v -4D b(B"1) .(8.6)

(8.5) is the appropriate extension of (4.10) and governs the

droplet production zone. The simplicity in form of this equation

should again be noted, chough, in contrast with (4.10), (8.5)



does depend on a single paTameter v
Numericaj solutions of (8.S) were obtained for various v

The droplet production term

V eX ~ (8.7)

is shown in figure 6 and the normalized droplet number density

A A (A

N(:;v) J f ;v)dT" (8.8)

is given in figure 7. In addition, the asymptotic level k(-;v)

which is proportional to the total number of droplets produced,
is displayed in figure 8. Figure 9 shows the solution for the
mass fraction .

The asymptotic growth, •÷a , of the mass fraction is again

governed by a cubic law

g az .C÷3 a0 + o(I) (8.9)

where

ci(v) = 3Cr 4 (-e)3-rexp[-V-9(e;v)]dC . (8..lI)

These coefficients are shown in figure 10. Note, in particular

that a 3(v) - vN(-;v)

As in §5,it follows that this precursor expansion will fail
when g-0(l) The asymptotic law (8.9) implies that this occurs
when ;=0(K -) or, from (7.3),

x - = 0(K1) . (8.11)

It is easily shown, neglecting terms 0(K14 ) , that the dominant
approximation within this growth zone in again governed by the
shock relations discussed in §6. However, the error term due to
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the area variation is now O(K: ) .,,significantly larger than
the contribution 0(K 1) obtained earlier in §§S and 6 for
xk x~± finite (<O)

Similar results to those out iined in §6 can be ?nbtllined
for the shock structure. By introducing the independent variable

n *b- a~*~B)I (-~ (8.12)

the rate equation, within the growth zon~e) becomes,

neglecting terms 0(K). Here

=S
3  

.(8.14)

and ad(S) denotes evaluation from the shock solution. Matching
with the precursor solution implies that

f d4 (8.lS)
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9. DM o ()

-It .a. not.d.above tha, for fixed- K., the-parameter -D-,p,1 ... m a:n~e~bv ht
decreases as X decreases. Correspondingly, the collapse point

moves further downstream. It is not difficult to show that the
behavior near x . is described by (7.7) with an error 0(KD2)
the error term 0(g/K) in (3.4) does not play a significant
role for D M o(1) , Droplet production is governed completely
by the frozen. solution. The validity of (7.7) is actually limited

either by droplet growth or by the local -area increase.

(7.7) will certainly be inappropriate when g 0(i) , or

O(KD)" (9.1)
£M

in•which case

x - O(K D (9.2)

r Consequently if

"KDIm = (1) (9.3)

the local area variation will not be important within this region
and the solution is again governed by the shock relations. In

this case the shock width is O(K %D "3) and the error term is
even greater than that obtained in §8 for Dm=0(l)

If KD is not small, (7.7) is limited, at least in part,
by the local area increase: the shock relations do not govern the
collapse of the supersaturated state. Further, it does not follow
that the flow will return to a saturated state. Since droplet
production effectively terminates upstream of che growth region,

and is governed by the frozen solution, it can be shown that the
rate equation will reduce to the simpler form

=& I =(4

34



with g=0. at XWXmin . For DImK = 0(1) the growth law (9.4)

is strongly coupled with the conservation relations and the
effect of the area variation can not be ignored.
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Appendix 1. The choking condition

From the supersonic branch of the shock relations it is

"' I not difficult to show that

T > 0 (Al.1)

upstream of choking. The initial conditions considered here
are such that

oT = (l+H' ln pv)' > (Al.2)

and > 0 . It follows that T increases monotonically

through the shock. Hence, if it can be established that

T* > "* (Al .3)
S

where * variables are evaluated at the choking point, at

least one equilibrium point (T=TDaTs) must have been attained
upstream of choking.

The shock relations imply that

2To 2__ _ _)_ [_ l+_ _ _y-___: •T* " y÷)M[l(--)Ml) [ly•)•]l..](A1'.4)

and

12To y-1 YM-+lI + ( 2 1

ll+(Y-) 6*1 0 W 0(-%1.5)• 1~+ (y"-l) 1U

For M1>l it is straightforward to establish that
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> 2- I a) = (Al. -

.. I and similarly, from (A1.5)

2T + P- * (Al.7)

Obviously, using (Al.2), if

. > [l+H-'ln(p, -l - (AI.8)

the inequality (Al.3) will certainly hold. It is shown below

that (Al.8) is valid if

2T0 > 1 . (Al.9)

In this case

> 1 (Al .10)

and (Al.8) follows immediately if < 1v<1 . For p*v>1 , a little
VU VU

more care is required. (Al.8) is equivalent to

exp[H(1-T.) > v*u
V

z U

Using (Al.6) and (Al.7) it is possible to re-write (Al.11) as

W W2 > 1 (Al.12)

where

(2T)Y1Iexp[H(I - + (Al.13)

and

,2 I-- (y- 1)6 ' exp [,iy4If(s) 'r 1.l. 14)
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... . . . . . ... . . ..• . . . . . . .

with

•- (Al. 15)

and

f =) (>2 -1+2)(y+l)6+(y-1)(y+3) 2 +(y-l)'S1 0 . (Al.16)

(y+l) 2 [1+ (y-1)6]

In order to establish (A1.12) it is important to note from
the shock relations that choking can occur only if C1 >0 or

2T 0  (Al .17)

Y

If (AI.17) does not hold then the asymptotic limit of the shock
solution certainly corresponds to a saturated state. flowever,
for C,>O it is seen that

W, > +T _x -i > I (Al.18)

provided that (Al.9) is val-d. Similarly

S> (l+(y-l)6] exp f(6) > .-A-.- A
-1 ~~ 1(l19)

Using (Al.16) it is now straightforward to show that

W>2 (Al .20)

(Al,18) and (Al.20) establish (Al.12) subject to (AI.9). Con-
sequently, the asymptotic limit of the shock solution will corre-
spond to a saturated state provided that T or,
equivalently (see 6.6),

14 > 1I (AI1.21J

Conversely, it is necessary, though not sufficient, that Ni <,
for choking to occur.
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Appendix 2. An approximate thokin crtorion

The condition M cl ostablished in appendix I is a tzicoa-

sary rather than 4 sufficient condition for chok@d flow. NLime r

ical calculations (16) indicate that choking takes place only
if M k-1 is sufficiently small, An approximate eitimute of tht.

actual choking barrier is given hore In the limit whan both

Mk(>I) Pnd NC(<I) are close to unity.

It is convenient to introduce small parameters c and A
such that

and

M2 - 1 - A AZZ
M, I (A2. 2)

Note that (A2.1) is equivalent to

" (y)(-M) . (A2.3)

In this limit the amount of heat required to choke the flow is

also small and it follows from the shock relations that at

choking O - 0(A 2 ) . Although not immediately apparent, it

also transpires that at choking C. O(A2)

Expansion of the shock relations shows that at choking

(-.1)"+ + 1S 6 + o(A2 ) (A2,,4)

and

S ..... . + , y l 6 + o(A ) (A2,5")2 (y+l) 2  L-.-. y tl

where

Preceding page blank 6 =*/H (A2.6)

41

I:



Pur the r

"4 v I\ (A) 7)

*Chokint will occur up~treamn of tht' 8atuirativ Pi'nt if

Oro uling the prevdill~ ro~ations,

Y.i 0 (A. O

Where 1 iderine~ I ,jl

The resu.lt3 presented if) this p~iper were obtainoJ ill tht'
course of researchi sponsorod by lDepartient of' J'f~entj pl't~jectTHEMIS under Contract No, DAAJ)OS-69-C-noO3 und Inonitored by
the Ballistics Research Laboratoritpti Aberdeen~ Proving G~round,
Md.
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Fig. 2. Particular examples for the shock structure.
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Fig. 7. The number of droplets in the precursor zone.

so



I..

4.>,

!0

i 0

- I

N'0

--

eJq - .a



0.8

JU11

0.6

"0.4
I

/
"0.2

S~0.1

-40

Fig. 9. The solution for the mass fraction in the
modified precursor zone.
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